50 research outputs found

    Vision : a model to study cognition

    Get PDF
    Our senses – vision, audition, touch, taste and smell – constantly receive a large amount of information. This information is processed and used in order to guide our actions. Cognitive sciences consist in studying mental abilities through different disciplines, e.g. linguistic, neuropsychology, neuroscience or modelling. Each discipline considers mental phenomena and their physical substrate, the nervous system, as a tool to process information in order to guide behavior adaptively (Collins, Andler, & Tallon-Baudry, 2018). Cognitive functions are a collection of processing systems serving different goals, and whose interactions are key to the complexity of cognition. Studying cognition often implies operationalizing each of these functions separately. For example, memory allows to store and reuse information, and attention allows to select relevant information for the task at hand, and to facilitate its processing. To characterize the processes of specific cognitive functions, it is thus necessary to provide to the studied subject – here we concentrate on human and non-human primates – an information to be processed, through different sensory modalities. In this essay, we concentrate on vision as a unique model to study cognition through different fields of cognitive sciences, from cognitive psychology to neurosciences, mentioning also briefly modeling and neuropsychology. Our objective is not to do an exhaustive description of the visual system, nor to compare in detail vision with other sensory modalities, but to argue that the accumulation of evidence on the visual system, as well as its characteristic perceptual, algorithmic and physiological organization, make it a particularly rich model to study cognitive functions. After a brief presentation of some properties of vision, we will illustrate our argument focusing on a specific cognitive function: attention, and in particular its study in cognitive psychology and neuroscience. We will discuss how our knowledge of vision allowed us to understand the behavioral and neuronal mechanisms underlying attentional selection and facilitation of information. We will finally conclude that sensory systems can be used as models to study cognition in different fields of cognitive sciences.Nos diffĂ©rents sens−la vue, l’audition, le toucher, le goĂ»t, l’odorat− reçoivent constamment un flux massif d’informations. Toutes ces informations sont traitĂ©es et utilisĂ©es afin de guider nos actions. Les sciences cognitives reprĂ©sentent l’étude de ces facultĂ©s mentales par le prisme de diffĂ©rentes disciplines, par exemple linguistique, neuropsychologie, neuroscience ou modĂ©lisation. Chacune de ces disciplines considĂšre les phĂ©nomĂšnes mentaux et leur substrat physique, le systĂšme nerveux, comme un outil de traitement de l’information ayant pour but de guider le comportement de façon adaptative (Collins, Andler, & Tallon-Baudry, 2018). Les fonctions cognitives constituent ainsi une collection de systĂšmes de traitement de l'information servant diffĂ©rents buts, et dont les interactions sont Ă  l’origine de la complexitĂ© de la cognition. L ’ Ă©tude de la cognition passe souvent par l’opĂ©rationnalisation de chacune de ces fonctions sĂ©parĂ©ment. Par exemple, la mĂ©moire permet de stocker et de rĂ©utiliser l’information, et l’attention permet de sĂ©lectionner celle qui est pertinente pour la tĂąche Ă  effectuer, et d’en faciliter son traitement. Afin de caractĂ©riser les processus propres Ă  une fonction cognitive donnĂ©e, il est alors nĂ©cessaire de fournir au sujet d’étude − ici nous nous concentrerons sur le primate humain et non-humain − une information Ă  traiter, via diffĂ©rentes modalitĂ©s sensorielles. Dans cet article d’opinion, nous nous concentrons sur la vision comme modĂšle d’étude singulier de la cognition Ă  travers diffĂ©rents champs des sciences cognitives, de la psychologie cognitive aux neurosciences, en passant briĂšvement par la modĂ©lisation et la neuropsychologie. Notre objectif n’est pas de faire une description exhaustive de la modalitĂ© visuelle ni de faire une comparaison dĂ©taillĂ©e avec les autres modalitĂ©s sensorielles, mais d’argumenter que l’accumulation des connaissances que nous en avons, ainsi que son organisation caractĂ©ristique du point de vue perceptif, algorithmique et physiologique, en font un modĂšle particuliĂšrement riche de l’étude des fonctions cognitives. AprĂšs une brĂšve prĂ©sentation de certaines bases de la vision, nous illustrerons notre argument en nous concentrant sur une fonction cognitive spĂ©cifique : l’attention, et en particulier, son Ă©tude en psychologie cognitive et neurosciences. Nous aborderons notamment la façon grĂące Ă  laquelle nos connaissances sur la vision nous ont permis de comprendre les mĂ©canismes comportementaux et neuronaux qui sous-tendent la sĂ©lection de l’information par l’attention, et la facilitation de son traitement. Nous conclurons que les systĂšmes sensoriels peuvent ĂȘtre utilisĂ©s comme modĂšles d’étude de la cognition dans divers domaines des sciences cognitives

    Attention explores space periodically at the theta frequency

    Get PDF
    Voluntary attention is at the core of a wide variety of cognitive functions. Attention can be oriented to and sustained at a location or reoriented in space to allow processing at other locations—critical in an ever-changing environment. Numerous studies have investigated attentional orienting in time and space, but little is known about the spatiotemporal dynamics of attentional reorienting. Here we explicitly manipulated attentional reorienting using a cuing procedure in a two- alternative forced-choice orientation-discrimination task. We interrogated attentional distribution by flashing two probe stimuli with various delays between the precue and target stimuli. Then we used the probabilities that both probes and neither probe were correctly reported to solve a second-degree equation, which estimates the report probability at each probe location. We demonstrated that attention reorients periodically at ~4 Hz (theta) between the two stimulus locations. We further characterized the processing dynamics at each stimulus location, and demonstrated that attention samples each location periodically at ;11 Hz (alpha). Finally, simulations support our findings and show that this method is sufficiently powered, making it a valuable tool for studying the spatiotemporal dynamics of attention

    Transcranial Magnetic Stimulation Reveals Attentional Feedback to Area V1 during Serial Visual Search

    Get PDF
    Visual search tasks have been used to understand how, where and when attention influences visual processing. Current theories suggest the involvement of a high-level “saliency map” that selects a candidate location to focus attentional resources. For a parallel (or “pop-out”) task, the first chosen location is systematically the target, but for a serial (or “difficult”) task, the system may cycle on a few distractors before finally focusing on the target. This implies that attentional effects upon early visual areas, involving feedback from higher areas, should be visible at longer latencies during serial search. A previous study from Juan & Walsh (2003) had used Transcranial Magnetic Stimulation (TMS) to support this conclusion; however, only a few post-stimulus delays were compared, and no control TMS location was used. Here we applied TMS double-pulses (sub-threshold) to induce a transient inhibition of area V1 at every post-stimulus delay between 100 ms and 500 ms (50 ms steps). The search array was presented either at the location affected by the TMS pulses (previously identified by applying several pulses at supra-threshold intensity to induce phosphene perception), or in the opposite hemifield, which served as a retinotopically-defined control location. Two search tasks were used: a parallel (+ among Ls) and a serial one (T among Ls). TMS specifically impaired the serial, but not the parallel search. We highlight an involvement of V1 in serial search 300 ms after the onset; conversely, V1 did not contribute to parallel search at delays beyond 100 ms. This study supports the idea that serial search differs from parallel search by the presence of additional cycles of a select-and-focus iterative loop between V1 and higher-level areas

    La vision : un modĂšle d'Ă©tude de la cognition

    Get PDF
    Our senses-vision, audition, touch, taste and smell-constantly receive a large amount of information. This information is processed and used in order to guide our actions. Cognitive sciences consist in studying mental abilities through different disciplines, e.g. linguistic, neuropsychology or modeling. Each discipline considers mental phenomena and their physical substrate, the nervous system, as a tool to process information in order to guide behavior adaptively (Collins, Andler, & Tallon-Baudry, 2018). Cognitive functions are a collection of processing systems serving different goals. For example, memory allows to store and reuse information, and attention allows to select relevant information for the task at hand, and to facilitate its processing. To characterize the processes of specific cognitive functions, it is thus necessary to provide to the studied subject – here we concentrate on human and non-human primates – an information to be processed, through different sensory modalities. In this opinion piece, we concentrate on vision as a unique model to study cognition through different fields of cognitive sciences, from cognitive psychology to neurosciences, mentioning also briefly modeling and neuropsychology. Our objective is not to do an exhaustive description of the visual system, nor to compare in detail vision with other sensory modalities, but to argue that the accumulation of evidence on the visual system, as well as its characteristic perceptual, algorithmic and physiological organization, make it a particularly rich model to study cognitive functions. After a brief presentation of some vision properties, we will illustrate our argument focusing on a specific cognitive function: attention, and in particular its study in cognitive psychology and neuroscience. We will discuss how our knowledge of vision allowed us to understand the behavioral and neural mechanisms underlying attentional selection and facilitation of information. We will finally conclude that sensory systems can be used as model to study cognition in different fields of cognitive sciences.Nos diffĂ©rents sens − la vue, l'audition, le toucher, le goĂ»t, l'odorat − reçoivent constamment un flux massif d'informations. Toutes ces informations sont traitĂ©es et utilisĂ©es afin de guider nos actions. Les sciences cognitives reprĂ©sentent l'Ă©tude de ces facultĂ©s mentales par le prisme de diffĂ©rentes disciplines, e.g. linguistique, neuropsychologie ou modĂ©lisation. Chacune de ces disciplines considĂšrent les phĂ©nomĂšnes mentaux et leur substrat physique, le systĂšme nerveux, comme un outil de traitement de l'information ayant pour but de guider le comportement de façon adaptative (Collins, Andler, & Tallon-Baudry, 2018). Les fonctions cognitives constituent ainsi une collection de systĂšmes de traitement de l'information servant diffĂ©rents buts. Par exemple, la mĂ©moire permet de stocker et de rĂ©utiliser l'information, et l'attention permet de sĂ©lectionner celle qui est pertinente pour la tĂąche Ă  effectuer, et d'en faciliter son traitement. Afin de caractĂ©riser les processus propres Ă  une fonction cognitive donnĂ©e, il est alors nĂ©cessaire de fournir au sujet d'Ă©tude − ici nous nous concentrerons sur le primate humain et non-humain − une information Ă  traiter, via diffĂ©rentes modalitĂ©s sensorielles. Dans cet article d'opinion, nous nous concentrons sur la vision comme modĂšle d'Ă©tude singulier de la cognition Ă  travers diffĂ©rents champs des sciences cognitives, de la psychologie cognitive aux neurosciences, en passant briĂšvement par la modĂ©lisation et la neuropsychologie. Notre objectif n'est pas de faire une description exhaustive de la modalitĂ© visuelle ni de faire une comparaison dĂ©taillĂ©e avec les autres modalitĂ©s sensorielles, mais d'argumenter que l'accumulation des connaissances que nous en avons, ainsi que son organisation caractĂ©ristique du point de vue perceptif, algorithmique et physiologique, en font un modĂšle particuliĂšrement riche de l'Ă©tude des fonctions cognitives. AprĂšs une brĂšve prĂ©sentation de certaines bases de la vision, nous illustrerons notre argument en nous concentrant sur une fonction cognitive spĂ©cifique : l'attention, et en particulier, son Ă©tude en psychologie cognitive et neurosciences. Nous aborderons notamment la façon grĂące Ă  laquelle nos connaissances sur la vision nous ont permis de comprendre les mĂ©canismes comportementaux et neuraux sous-tendant la sĂ©lection de l'information par l'attention, et la facilitation de son traitement. Nous conclurons que les systĂšmes sensoriels peuvent ĂȘtre utilisĂ©s comme modĂšles d'Ă©tude de la cognition dans divers domaines des sciences cognitives

    Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging

    Get PDF
    Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.Peer reviewe

    Innovation et développement dans les systÚmes agricoles et alimentaires

    Get PDF
    L’innovation est souvent prĂ©sentĂ©e comme l’un des principaux leviers pour promouvoir un dĂ©veloppement plus durable et plus inclusif. Dans les domaines de l’agriculture et de l’alimentation, l’innovation est marquĂ©e par des spĂ©cificitĂ©s liĂ©es Ă  sa relation Ă  la nature, mais aussi Ă  la grande diversitĂ© d’acteurs concernĂ©s, depuis les agriculteurs jusqu’aux consommateurs, en passant par les services de recherche et de dĂ©veloppement. L’innovation Ă©merge des interactions entre ces acteurs, qui mobilisent des ressources et produisent des connaissances dans des dispositifs collaboratifs, afin de gĂ©nĂ©rer des changements. Elle recouvre des domaines aussi variĂ©s que les pratiques de production, l’organisation des marchĂ©s, ou les pratiques alimentaires. L’innovation est reliĂ©e aux grands enjeux de dĂ©veloppement : innovation agro-Ă©cologique, innovation sociale, innovation territoriale, etc. Cet ouvrage porte un regard sur l’innovation dans les systĂšmes agricoles et alimentaires. Il met un accent particulier sur l’accompagnement de l’innovation, en interrogeant les mĂ©thodes et les organisations, et sur l’évaluation de l’innovation au regard de diffĂ©rents critĂšres. Il s’appuie sur des rĂ©flexions portĂ©es par diffĂ©rentes disciplines scientifiques, sur des travaux de terrain conduits tant en France que dans de nombreux pays du Sud, et enfin sur les expĂ©riences acquises en accompagnant des acteurs qui innovent. Il combine des synthĂšses sur l’innovation et des Ă©tudes de cas emblĂ©matiques pour illustrer les propos. L’ouvrage est destinĂ© aux enseignants, professionnels, Ă©tudiants et chercheurs

    Attentional and perceptual cycles : investigations using psychophysics, electroencephalography and transcranial magnetic stimulations (cycles attentionnels et perceptuels)

    No full text
    Analysons-nous le monde de façon continue ou bien selon une séquence d'évÚnements, un peu comme des instantanés pris par une caméra vidéo ? C'est la question qui a motivé ma thÚse dans un premier temps. De précédentes expériences ont démontré que l'information visuelle était échantillonnée de façon périodique par l'attention, et que ce traitement était supporté par des oscillations de l'activité EEG. Dans le 1er papier, en utilisant la TMS, nous avons pu établir pour la premiÚre fois une relation causale entre la phase des oscillations spontanées, l'excitabilité cérébrale et la perception visuelle. Dans une autre série d'expériences, nous nous sommes demandé quel était le comportement spatio-temporel de l'attention au cours de tùches de recherche visuelle. A l'aide de diverses expériences (papiers 2 à 4) et de différentes techniques (TMS, EEG, psychophysique), nous avons pu établir des arguments convaincants en faveur d'un échantillonnage périodique de l'information visuelle par l'attention. De plus, dans le 5Úme papier, nous avons pu clarifier une question hautement débattue concernant les tùches de recherche visuelle en éliminant la possibilité d'un traitement en parallÚle de l'intégralité des stimuli présents à l'écran, suggérant un traitement séquentiel des différents stimuli au cours de la recherche. Ce travail de thÚse a permis d'apporter des arguments forts en faveur d'un traitement périodique, voire séquentiel, de l'information visuelle par l'attentionDo we experience the world continuously or as a discrete sequence of events, like samples of a video camera? This is the first question motivating my PhD work. Previous experiments have shown that visual information may be sampled periodically by attention, this processing being supported by oscillations in the EEG brain activity. In paper 1, using TMS, we were able to establish for the first time a causal relation between the phase of ongoing oscillations, brain excitation and visual perception. In another series of experiments, we explored the spatio-temporal behaviour of attention during visual search tasks. Using various experiments (papers 2 to 4) and various techniques (TMS, EEG, psychophysics), we brought convincing and converging evidence in favour of a periodic sampling of visual information by attention. Moreover, in paper 5, we were able to clarify an age-old debate concerning visual search tasks by ruling out the possibility that attention is distributed in parallel over all stimuli in the search array, suggesting a sequential processing of the different stimuli during the search. Overall, this PhD work gives strong arguments in favour of a periodic, and perhaps sequential, processing of visual information by attentio

    The rhythms of visual attention

    No full text

    La vision : un modĂšle d'Ă©tude de la cognition

    No full text
    Our senses-vision, audition, touch, taste and smell-constantly receive a large amount of information. This information is processed and used in order to guide our actions. Cognitive sciences consist in studying mental abilities through different disciplines, e.g. linguistic, neuropsychology or modeling. Each discipline considers mental phenomena and their physical substrate, the nervous system, as a tool to process information in order to guide behavior adaptively (Collins, Andler, & Tallon-Baudry, 2018). Cognitive functions are a collection of processing systems serving different goals. For example, memory allows to store and reuse information, and attention allows to select relevant information for the task at hand, and to facilitate its processing. To characterize the processes of specific cognitive functions, it is thus necessary to provide to the studied subject – here we concentrate on human and non-human primates – an information to be processed, through different sensory modalities. In this opinion piece, we concentrate on vision as a unique model to study cognition through different fields of cognitive sciences, from cognitive psychology to neurosciences, mentioning also briefly modeling and neuropsychology. Our objective is not to do an exhaustive description of the visual system, nor to compare in detail vision with other sensory modalities, but to argue that the accumulation of evidence on the visual system, as well as its characteristic perceptual, algorithmic and physiological organization, make it a particularly rich model to study cognitive functions. After a brief presentation of some vision properties, we will illustrate our argument focusing on a specific cognitive function: attention, and in particular its study in cognitive psychology and neuroscience. We will discuss how our knowledge of vision allowed us to understand the behavioral and neural mechanisms underlying attentional selection and facilitation of information. We will finally conclude that sensory systems can be used as model to study cognition in different fields of cognitive sciences.Nos diffĂ©rents sens − la vue, l'audition, le toucher, le goĂ»t, l'odorat − reçoivent constamment un flux massif d'informations. Toutes ces informations sont traitĂ©es et utilisĂ©es afin de guider nos actions. Les sciences cognitives reprĂ©sentent l'Ă©tude de ces facultĂ©s mentales par le prisme de diffĂ©rentes disciplines, e.g. linguistique, neuropsychologie ou modĂ©lisation. Chacune de ces disciplines considĂšrent les phĂ©nomĂšnes mentaux et leur substrat physique, le systĂšme nerveux, comme un outil de traitement de l'information ayant pour but de guider le comportement de façon adaptative (Collins, Andler, & Tallon-Baudry, 2018). Les fonctions cognitives constituent ainsi une collection de systĂšmes de traitement de l'information servant diffĂ©rents buts. Par exemple, la mĂ©moire permet de stocker et de rĂ©utiliser l'information, et l'attention permet de sĂ©lectionner celle qui est pertinente pour la tĂąche Ă  effectuer, et d'en faciliter son traitement. Afin de caractĂ©riser les processus propres Ă  une fonction cognitive donnĂ©e, il est alors nĂ©cessaire de fournir au sujet d'Ă©tude − ici nous nous concentrerons sur le primate humain et non-humain − une information Ă  traiter, via diffĂ©rentes modalitĂ©s sensorielles. Dans cet article d'opinion, nous nous concentrons sur la vision comme modĂšle d'Ă©tude singulier de la cognition Ă  travers diffĂ©rents champs des sciences cognitives, de la psychologie cognitive aux neurosciences, en passant briĂšvement par la modĂ©lisation et la neuropsychologie. Notre objectif n'est pas de faire une description exhaustive de la modalitĂ© visuelle ni de faire une comparaison dĂ©taillĂ©e avec les autres modalitĂ©s sensorielles, mais d'argumenter que l'accumulation des connaissances que nous en avons, ainsi que son organisation caractĂ©ristique du point de vue perceptif, algorithmique et physiologique, en font un modĂšle particuliĂšrement riche de l'Ă©tude des fonctions cognitives. AprĂšs une brĂšve prĂ©sentation de certaines bases de la vision, nous illustrerons notre argument en nous concentrant sur une fonction cognitive spĂ©cifique : l'attention, et en particulier, son Ă©tude en psychologie cognitive et neurosciences. Nous aborderons notamment la façon grĂące Ă  laquelle nos connaissances sur la vision nous ont permis de comprendre les mĂ©canismes comportementaux et neuraux sous-tendant la sĂ©lection de l'information par l'attention, et la facilitation de son traitement. Nous conclurons que les systĂšmes sensoriels peuvent ĂȘtre utilisĂ©s comme modĂšles d'Ă©tude de la cognition dans divers domaines des sciences cognitives
    corecore